

Kanałowy wentylator odśrodkowy w obudowie stalowej do wentylacji pomieszczeń kuchennych Wydajność do $3500 \mathrm{~m}^{3} / \mathrm{h}$.

Zastosowanie

Wentylator przeznaczony jest do usuwania z pomieszczeń zanieczyszczonego, zadymionego, gorącego powietrza (do $100^{\circ} \mathrm{C}$) i oparów łłuszczu, w warunkach wysokich oporów powietrza w systemie. Polecany jest do zastosowania w systemach wentylacji pomieszczeń kuchennych i piekarniczych (w profesjonalnej gastronomii), oraz w pomieszczeniach przemysłowych do usuwania gazów spawalniczych.

■ Konstrukcja

Obudowa wentylatora wykonana jest z galwanizowanej stali i materiału izolującego termicznie i akustycznie w postaci warstwy wetny mineralnej o grubości 50 mm . Wentylator wyposażony jest w pierścienie antywibracyjne. Króćce przyłączeniowe posiadają gumowe uszczelki. Dostęp do bloku silnika umożliwia ścianka rewizyjna z wygodnym uchwytem.

\square Silnik

Wentylator wyposażony jest w odporny na wysoką temperature, jednofazowy silnik ze stalowym wirnikiem o łopatkach wygiętych do przodu. Silnik posiada zintegrowane styki termiczne z wyprowadzonymi na zewnętrz końcówkami do podłączenia zewnętrznego urządzenia zabezpieczającego. Wirnik wyważony jest statycznie i dynamicznie. Silnik posiada klasę izolacji uzwojenia F i klasę bezpieczeństwa IP54.

- Regulacja prędkości

Regulowanie wydajności może odbywać się w sposób płynny (regulator tyrystorowy) jak również skokowy (regulator transformatorowy). Realizuje się to za pomocą regulatora tyrystorowego albo transformatorowego. Wentylatory mogą być podłączone po parę jednostek do jednego sterownika pod warunkiem, że dostępna moc i prąd nie będą przewyższać nominalnych parametrów regulatora.

■ Podłączenie

Wentylator przeznaczony jest do połączenia z kanałami okrągłymi systemu wentylacyjnego. Przytwierdzenie do ściany jest możliwe za pomocą uchwytów montażowych MK-SKS (dostępnych na dodatkowe zamówienie). Skrzynka przyłączeniowa umieszczona jest na bloku silnika. Przyłączenie elektryczne i instalacja musi być wykonane zgodnie z instrukcją i elektrycznym schematem znajdującym się w DTR.

Przykład zastosowaia

Seria	Średnica kanału	Silnik	
	15	Ilość biegunów	llość faz
KSK	250	4	E - jednofazowy D - trójfazowy

str. 340

str. 351

Charakterystyki techniczne：

KSK 150 4E KSK 150 4D KSK 160 4E KSK 160 4D

Napięcie（V）	$1 \sim 230$	$3 \sim 380$
Moc（W）	180	180
Pobór prądu（A）	1,7	0,6
Wydajność $\left(\mathrm{m}^{3} / \mathrm{h}\right)$	700	730
Obroty $\left(\mathrm{min}^{-1}\right)$	1450	1455
Poziom hałasu［dB（A）／3 m］	41	41
Maksymalna temperatura pracy $\left({ }^{\circ} \mathrm{C}\right)$	$-20 \ldots+100$	$-20 \ldots+100$
Klasa bezpieczeństwa	IP 54	IP 54

Wymiary wentylatorów：

Typ	Wymiary（mm）										Waga
	$\varnothing \mathrm{D}$	B	B1	H	H1	L	L1	12	，		

KSK 150 4E 150410330540365525500470475205 17，0 KSK 150 4D 150410330540365525500470475205 17，0 KSK 160 4E 160410330540365525500470475205 17，0 KSK 160 4D 160410330540365525500470475205 17，0 KSK 200 4E 200485365600425625600570515235 KSK 200 4D 200485365600425625600570515235 25，0 KSK 250 4E 250575435665505700675645620285 40，0 KSK 250 4D 250575435665505700675645620285

Naga （kg） ，0 ，0 ，0 ， 0

		$\begin{aligned} & \text { O } \\ & \frac{0}{N} \\ & \sum_{i}^{\prime} \\ & \frac{0}{\omega} \\ & \stackrel{\omega}{6} \\ & F \end{aligned}$	$\text { TT Silent-M } 125$		$\begin{aligned} & \text { O} \\ & \sum_{N} \\ & \sum_{\grave{N}} \\ & \stackrel{\omega}{\omega} \\ & \stackrel{E}{E} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{N}{N} \\ & \sum_{i}^{\prime} \\ & \dot{C} \\ & \stackrel{\omega}{\omega} \\ & \vDash \end{aligned}$							$\begin{aligned} & \text { ш } \\ & \dot{\circ} \\ & \stackrel{0}{4} \\ & \dot{\sim} \end{aligned}$		w $\stackrel{1}{8}$ 0 $>$ $>$		0 O 0 0 0 $>$					$\stackrel{Q}{\circ}$ $\stackrel{\circ}{ }$ $\stackrel{1}{>}$	$\begin{aligned} & 8 \\ & 0 \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{N} \\ & \underset{y}{n} \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \infty \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{n} \\ & \infty \\ & \underset{y}{n} \end{aligned}$	∞ 0 0 0 0 0	$\begin{aligned} & \text { O} \\ & \sim \\ & 0 \\ & 0 \\ & \end{aligned}$	n 0 0 0
Regulatory prędkości tyrystorowe																														
3	RS-1-300							-															-	-	-	\bullet	-	\bullet	-	-
	RS-1-400							-															\bullet	-	-	\bullet	\bullet	-	\bullet	\bullet
	RS-1 N (W)																						-	-	-	-	-	-	-	
	RS-1,5 N (W)							-															-	-	-	-	-	-	-	-
	RS-2 N(W)							-															-	-	-	-	-	-	-	-
	RS-2,5 N (W)							-		-													-	-	-	-	-	-	-	-
Regulatory prędkości transformatorowe																														
s	ARW1,5							-															\bullet	-	-	-	-	-	-	-
	ARW5,0							-		-			-										-	-	-	-	-	-	-	-
	ARW5,0							-		-			-										-	-	-	-	-	-	-	-
	ARW10,0							-		-			-		-								-	-	-	-	-	-	-	-
	ARW10,0							-		-			-		-								-	-	-	-	-	-	-	-
	A3RW1,5								-		-	\bullet																		
	A3RW4,0								-		-			-		-		-			-									
Regulatory temperaturowe																														
	RTS-1-400	-	-	-	-	-	-																							
	RTSD-1-400	-	-	-	-	-	-																							
	RT-10	-	-	-	-	-	-	-															-	-	-	\bullet	-	-	-	-
Przełączniki biegów wentylatora																														
	P2-5,0	-	-	-	-	-	-																							
	P3-5,0																													
	P5-5,0																													
$\underline{\square}$	P2-1-300	-	-	-	-	-	-																							
	P3-1-300																													
CB_{2}	SP3-1																													

			$\begin{aligned} & \text { ய } \\ & \dot{0} \\ & \dot{0} \\ & \stackrel{N}{N} \\ & \hat{N} \\ & \underset{y}{2} \end{aligned}$					$\begin{aligned} & \text { u } \\ & \underset{\sim}{n} \\ & \stackrel{1}{m} \\ & \underset{N}{n} \end{aligned}$				KSD 315/250x2-4E						$\begin{aligned} & \text { ய } \\ & \stackrel{0}{n} \\ & \stackrel{y}{\sim} \\ & \stackrel{y}{6} \end{aligned}$	
Regulatory prędkości tyrystorowe																			
β	RS-1-300	\bullet	-	\bullet										\bullet					
\sim	RS-1-400	\bullet	\bullet	-															
	RS-1 N (V)	-																	
	RS-1,5 N (V)	-	-	-															
	RS-2 N (V)	\bullet	-	-										-					
	RS-2,5 N (V)	-	-	-		-				-				-					
Regulatory prędkości transformatorowe																			
Ne	ARW1,5	-	-	-															
	ARW5,0	\bullet	-	-	-	-		-		-		-		-		-			
	ARW5,0	\bullet	-	-	-	-	-	-	-	-		-	-	-		-			
	ARW10,0	-	-	-	-	-	-	-	-	-	-	-	-	-		-			
	ARW10,0	-	-	-	-	-	-	-	-	-	-	-	-	-		-			
	A3RW1,5																		
	A3RW4,0															-			\bullet
Regulatory temperaturowe																			
	RTS-1-400													-					
	RTSD-1-400													-					
10	RT-10	-	-	-										-		-			
Przełączniki biegów wentylatora																			
	P2-5,0													-		-			
	P3-5,0													-		-			
	P5-5,0													-		-			
$=$	P2-1-300													-					
	P3-1-300													-					
Regulatory prędkości dla silników EC																			
!	R-1/010																		
\therefore	SP3-1																		

